پیش بینی آبدهی متوسط ماهانه با استفاده از مدل تلفیقی شبکه عصبی مصنوعی و تبدیلات موجک (مطالعه موردی: رودخانه کر- ایستگاه پل خان)

نویسنده

چکیده مقاله:

آگاهی از اطلاعات دبی جریان در رودخانه ها برای مدیریت منابع آب، پیش بینی سیل، طراحی مهندسی و مدیریت زیست محیطی ضروری می باشد. مدل های ارائه شده همچون بارش-رواناب و سری های زمانی به منظور پیش بینی میزان آبدهی رودخانه ها به دلیل عدم دقت و پیچیدگی عوامل مؤثر در آبدهی در بسیاری از موارد با مقادیر مشاهده شده تطابق ندارد. موجک یکی از روشهایی است که در سالهای اخیر در زمینه هیدرولوژی مورد توجه قرار گرفته است. همچنین موجک روشی بسیار مؤثر در زمینه آنالیز سیگنال ها و سری های زمانی می باشد. این مقاله به ارائه یک مدل هوشمند تلفیقی مبتنی بر شبکه عصبی مصنوعی و تبدیلات موجک می پردازد که برای شبیه سازی آبدهی متوسط ماهانه در رودخانه کر و ایستگاه پل خان مورد استفاده قرار می گیرد. عملکرد مدل های پیش بینی به کمک معیارهای جذر میانگین مربع خطا و ضریب تعیین مورد ارزیابی قرار گرفتند. نتایج نشان دادند که مدل تلفیقی شبکه عصبی مصنوعی و تبدیل موجک با 2 درجه تجزیه سازی برای مناسب ترین ساختار، بهترین نتایج را ارائه می کند. در این ساختار، آبدهی خروجی برای جریان در ماه بعد بر حسب آبدهی 4، 3، 2، 1 ماه قبل و ماه جاری محاسبه شده و مقادیر و به ترتیب برابر با 14/7 مترمکعب بر ثانیه و 941/0 به دست آمد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

متن کامل

پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)

پیش­بینی دقیق جریان در رودخانه­ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی­ها است. به دلیل اهمیت پیش­بینی جریان رودخانه، در این تحقیق جریان روزانه رودخانه­ی باراندوزچای در دو ایستگاه بی­بکران و دیزج طی یک دوره­ی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) می­باشد، پیش­بینی گرد...

متن کامل

پیش بینی دماهای ماهانه ایستگاه های همدید منتخب استان اصفهان، با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه

پیش بینی دما از کاربردی ترین برآوردهای عناصر آب و هوایی است. امروزه بخش های کشاورزی و صنعت وابستگی زیادی به شرایط دمایی (آب و هوا) دارند. دما یکی از فراسنج های بسیار مهم آب و هوایی است و از عوامل اصلی هویت آب و هوایی هر ناحیه محسوب می شود. هدف از انجام این پژوهش، مدل سازی برای پیش بینی میانگین دمای ماهانه ایستگاه های منتخب استان اصفهان است؛ از این رو، پس از بررسی طول دوره آماری ایستگاههای موجود...

متن کامل

پیش بینی بار معلق رودخانه با استفاده از مدل‌های سری زمانی و شبکه عصبی مصنوعی (مطالعه موردی: ایستگاه قزاقلی رودخانه گرگانرود)

Accurate estimation of suspended sediment in rivers is very important from different aspects including agriculture, soil conservation, shipping, dam construction and aquatic research. There are different methods for suspended sediment estimation. In the present study to evaluate the ability of time-series models including Markov and ARIMA in predicting suspended sediment and to compare their re...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 22  شماره 3

صفحات  231- 239

تاریخ انتشار 2015-08-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023